C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Structural Analysis-I

Subject Code : 4TE03STA1

Branch : B. Tech.(Civil)

Semester : 3 Date : 05/12/2015 Time : 2:30 To 5:30 Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1

Attempt the following questions:
a) When shear force at a point is zero, then bending moment at that point will be
(A) zero
(B) maximum
(C) minimum
(D) infinity
b) The buckling load for a given column depends upon
(A) cross sectional area of column
(B) length and least radius of gyration
(C) modulus of elasticity of column material
(D) all of the above
c) If slender ratio for a column is 100 , then it is said to be
(A) short column
(B) long column
(C) medium column
d) Which of the following is a proper sequence?
(A) elastic limit, proportional limit, yielding, failure
(B) yielding, proportional limit, elastic limit, failure
(C) proportional limit, elastic limit, yielding, failure
(D) none of the above
e) The self-weight of the beam will be taken as
(A) point load
(B) uniformly distributed load
(C) uniformly varying load
(D) none of these
f) Maximum strain energy which can be stored in a body per unit volume, at elastic limit is called,
(A) modulus of resilience (B) resilience (C) proof resilience (D) all of the above
g) A bar 54 mm in diameter is 4 m long. An axial load of 180 kN is suddenly applied to it find the maximum instantaneous stress.
(A) $157.19 \mathrm{~N} / \mathrm{mm}^{2}$
(B) $257.25 \mathrm{~N} / \mathrm{mm}^{2}$
(C) $201.20 \mathrm{~N} / \mathrm{mm}^{2}$
(D) $98.1 \mathrm{~N} / \mathrm{mm}^{2}$
h) The slenderness ratio is the ratio of
(A) M.I to area of column
(B) length of column to least radius of gyration
(C) least radius of gyration to area of column
(D) least radius of gyration to length of column
i) Fixed end moment at hinged support is
(A) maximum
(B) minimum
(C) zero
(D) none of these

j) Castingliano's first theorem is used for finding
(A) slope
(B) deflection
(C) A \& B both
(D) none of these
k) a) Homogeneous material is always isotropic,
b) Isotropic material is always homogeneous.
(A) ' a ' true \& ' b ' falls
(B) 'b' true \& 'a' falls
(C) 'a' true \& 'b' true
(D) ' a ' falls \& ' b ' falls
I) Fixed end moment for udl on entire span of fixed beam
(A) wl/4
(B) $\mathrm{wl}^{2} / 8$
(C) wl/8
(D) $\mathrm{wl}^{2} / 12$
m) Strain energy due to torsion for solid shaft
(A) $\tau^{2} V / 14 G$
(B) $4 \tau^{2} / G$
(C) $\tau^{2} V / 4 G$
(D) $\tau^{2} \mathrm{G} / 4 \mathrm{~V}$
n) Define poisson's ratio.

Attempt any four questions from Q-2 to Q-8

(a) Draw and explain the stress-strain curve for mild steel.
(b) A circular bar having $200 \mathrm{~mm}^{2}$ area is subjected to the axial load as shown in figure. Find the value of P and the total elongation. Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$.

Q-5 Attempt all questions

(a) A steel bar 1 m in length is subjected to a pull such that the maximum stress is equal
(a) Draw shear force and bending moment diagram for a beam shown in figure.

(b) A simply supported beam 8 m span, subjected to two point loads 50 kN and 80 kN at 2.5 m from each support it is also subjected to u.d.l of $25 \mathrm{kN} / \mathrm{m}$ on full length, find reactions at the supports.
Attempt all questions to $150 \mathrm{~N} / \mathrm{mm}^{2}$. It's cross section is $200 \mathrm{~mm}^{2}$ over a length of 950 mm and for the middle 50 mm length the sectional area is $100 \mathrm{~mm}^{2}$. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate strain energy stored in the bar.

(b) Determine δ_{B} and δ_{C} for a cantilever beam shown in figure. Take $\mathrm{EI}=10 \times 10^{13}$ N. mm^{2}.

Attempt all questions

(a) Find slope and deflection by moment area method at point B for beam shown in figure.

$\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \mathrm{I}=5 \times 10^{8} \mathrm{~mm}^{4}$
(b) A ' T ' section is having flange with 100 mm and total depth 80 mm . the thickness of flange and web is 10 mm . the length of column is 3.0 m and it is hinged at both ends. If $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find Euler's buckling load. Attempt all questions
(a) Derive kernel (core) of section for rectangular and circular section.
(b) Compare the strength of solid circular column and hollow circular column using Euler's formula. For hollow circular column internal diameter is $7 / 10$ times the external diameter. Both the columns have same cross sectional area, same length, same material and hinged at both ends.

Attempt all questions

(a) A beam $\mathrm{ABC}, 10 \mathrm{~m}$ long, fixed at ends A and C is continuous over joint B and is loaded as shown in fig. using slope deflection method, compute the end moments and plot the bending moment diagram. Also, sketch the deflected shape of the beam. The beam has constant EI for both the spans.

(b) What is effective length for column when:
(i) both end hinged, (ii) both end fixed, (iii) one end fixed and other end hinged, (iv) one end fixed and other end free.

