Enrollment No: \_\_\_\_\_ Exam Seat No: \_\_\_\_\_

# C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Structural Analysis-I

|     | Subject              | <b>Code :</b> 4TE03STA1 <b>Branch :</b> B. Tech.(Civil)                                                                                                                                                                                                                                                                                                     |      |
|-----|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | Semeste<br>Instructi | er: 3 Date: 05/12/2015 Time: 2:30 To 5:30 Marks: 70<br>ions:                                                                                                                                                                                                                                                                                                |      |
|     | (1)<br>(2)<br>(3)    | Use of Programmable calculator & any other electronic instrument is prohibited.<br>Instructions written on main answer book are strictly to be obeyed.<br>Draw neat diagrams and figures (if necessary) at right places                                                                                                                                     |      |
|     | (3)                  | Assume suitable data if needed.                                                                                                                                                                                                                                                                                                                             |      |
| Q-1 |                      | Attempt the following questions:                                                                                                                                                                                                                                                                                                                            | (14) |
|     | a)                   | When shear force at a point is zero, then bending moment at that point will be (A) zero (B) maximum (C) minimum (D) infinity                                                                                                                                                                                                                                | 01   |
|     | b)                   | The buckling load for a given column depends upon<br>(A) cross sectional area of column (B) length and least radius of gyration<br>(C) modulus of elasticity of column material (D) all of the above                                                                                                                                                        | 01   |
|     | c)                   | If slender ratio for a column is 100, then it is said to be<br>(A) short column (B) long column (C) medium column                                                                                                                                                                                                                                           | 01   |
|     | d)                   | <ul> <li>Which of the following is a proper sequence?</li> <li>(A) elastic limit, proportional limit, yielding, failure</li> <li>(B) yielding, proportional limit, elastic limit, failure</li> <li>(C) proportional limit, elastic limit, yielding, failure</li> <li>(D) none of the above</li> </ul>                                                       | 01   |
|     | e)                   | The self-weight of the beam will be taken as<br>(A) point load (B) uniformly distributed load<br>(C) uniformly varying load (D) none of these                                                                                                                                                                                                               | 01   |
|     | f)                   | Maximum strain energy which can be stored in a body per unit volume, at elastic limit is called,                                                                                                                                                                                                                                                            | 01   |
|     | g)                   | <ul> <li>(A) modulus of resilience (B) resilience (C) proof resilience (D) all of the above A bar 54 mm in diameter is 4 m long. An axial load of 180 kN is suddenly applied to it find the maximum instantaneous stress.</li> <li>(A) 157.19 N/mm<sup>2</sup> (B) 257.25 N/mm<sup>2</sup> (C) 201.20 N/mm<sup>2</sup> (D) 98.1 N/mm<sup>2</sup></li> </ul> | 01   |
|     | h)                   | <ul> <li>(A) Notify Formation (B) 20 field formation (C) 20 field formation (B) solution (C) for Formation (C) least radius of gyration to area of column</li> <li>(D) least radius of gyration to length of column</li> <li>(D) least radius of gyration to length of column</li> </ul>                                                                    | 01   |
|     | i)                   | Fixed end moment at hinged support is<br>(A) maximum (B) minimum (C) zero (D) none of these                                                                                                                                                                                                                                                                 | 01   |

Page 1 || 3



|             | j)  | Castingliano's first theorem is used for finding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01   |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|             |     | (A) slope (B) deflection (C) A & B both (D) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|             | k)  | a) Homogeneous material is always isotropic,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01   |
|             |     | b) Isotropic material is always homogeneous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|             |     | (A) 'a' true & 'b' falls (B) 'b' true & 'a' falls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|             |     | (C) 'a' true & 'b' true (D) 'a' falls & 'b' falls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|             | l)  | Fixed end moment for udl on entire span of fixed beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01   |
|             |     | (A) wl/4 (B) wl <sup>2</sup> /8 (C) wl/8 (D) wl <sup>2</sup> /12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|             | m)  | Strain energy due to torsion for solid shaft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01   |
|             |     | (A) $\tau^2 V/14G$ (B) $4\tau^2/G$ (C) $\tau^2 V/4G$ (D) $\tau^2 G/4V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|             | n)  | Define poisson's ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01   |
| • • • •     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Attempt     | any | tour questions from Q-2 to Q-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| <b>Q-</b> 2 |     | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (14) |
|             | (a) | A rectangular column section 250 mm x 150 mm carries two equal point loads. One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05   |
|             |     | at center and other at 150 mm side edge along centroidal axis. Find value of point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|             |     | load if maximum resultant stress is not to exceed 20 N/mm <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05   |
|             | (b) | A rectangular column of size 500 mm x 250 mm carriers an eccentric load of 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05   |
|             |     | kN on the axis bisecting the thickness at 150 mm from centroidal axis. Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|             | (a) | maximum and minimum resultant stress and draw stress diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04   |
|             | (C) | Derive an equation for elongation of a bar of uniformity circular section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04   |
| Q-3         |     | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (14) |
|             | (a) | Draw shear force and bending moment diagram for a beam shown in figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07   |
|             |     | 1 kN/m 15 kN   5 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|             |     | A company to company |      |
|             |     | B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|             |     | 3.0 m - 3.0 m - 3.0 m - 3.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |

(b) A simply supported beam 8m span, subjected to two point loads 50kN and 80kN at 07 2.5 m from each support it is also subjected to u.d.l of 25 kN/m on full length, find reactions at the supports. (14)

#### Attempt all questions Q-4

- (a) Draw and explain the stress-strain curve for mild steel.
- (b) A circular bar having 200  $\text{mm}^2$  area is subjected to the axial load as shown in figure. 07 Find the value of P and the total elongation. Take  $E = 200 \text{ kN/ mm}^2$ .



#### Q-5 Attempt all questions

(a) A steel bar 1 m in length is subjected to a pull such that the maximum stress is equal to 150 N/mm<sup>2</sup>. It's cross section is 200 mm<sup>2</sup> over a length of 950 mm and for the middle 50 mm length the sectional area is 100 mm<sup>2</sup>. If  $E = 2 \times 10^5 \text{ N/mm^2}$ . Calculate strain energy stored in the bar.

Page 2 || 3



(14) 07

07

(b) Determine  $\delta_B$  and  $\delta_C$  for a cantilever beam shown in figure. Take EI = 10 x 10<sup>13</sup> N.mm<sup>2</sup>.



## Q-6 Attempt all questions

(a) Find slope and deflection by moment area method at point B for beam shown in figure.



 $E = 2 \times 10^5 \text{ N/mm}^2 \text{ I} = 5 \times 10^8 \text{ mm}^4$ 

(b) A 'T' section is having flange with 100 mm and total depth 80 mm. the thickness of flange and web is 10 mm. the length of column is 3.0 m and it is hinged at both ends. If  $E = 2.1 \times 10^5 \text{ N/mm}^2$ , find Euler's buckling load.

## Q-7 Attempt all questions

- (a) Derive kernel (core) of section for rectangular and circular section.
- (b) Compare the strength of solid circular column and hollow circular column using 07 Euler's formula. For hollow circular column internal diameter is 7/10 times the external diameter. Both the columns have same cross sectional area, same length, same material and hinged at both ends.

### Q-8 Attempt all questions

(a) A beam ABC, 10 m long, fixed at ends A and C is continuous over joint B and is loaded as shown in fig. using slope deflection method, compute the end moments and plot the bending moment diagram. Also, sketch the deflected shape of the beam. The beam has constant EI for both the spans.



(b) What is effective length for column when:
(i) both end hinged, (ii) both end fixed, (iii) one end fixed and other end hinged, (iv) one end fixed and other end free.



Page 3 || 3

04

07

(**14**) 07

(**14**) 10

(14)

07